Why Cloud Security Is Important

“Cloud Security is the whole bundle of technology, protocols, and best practices that protect Cloud Computing environments, applications running in the Cloud, and data held in the Cloud.”

Cloud Security is a discipline of Cybersecurity dedicated to securing Cloud Computing systems. This includes keeping data private and safe across online-based infrastructure, applications, and platforms. Securing these systems involves the efforts of cloud providers and the clients that use them, whether an individual, small to medium business, or enterprise uses.

Cloud providers host services on their servers through always-on internet connections. Since their business relies on customer trust, cloud security methods are used to keep client data private and safely stored. However, cloud security also partially rests in the client’s hands as well. Understanding both facets is pivotal to a healthy cloud security solution.

At its core, Cloud Security is composed of the following categories:

  • Data security
  • Identity and access management (IAM)
  • Governance (policies on threat prevention, detection, and mitigation)
  • Data retention (DR) and business continuity (BC) planning
  • Legal compliance

Cloud security may appear like legacy IT security, but this framework actually demands a different approach. Before diving deeper, let’s first look at what Cloud Security is.

What Is Cloud Security

Cloud Security is the whole bundle of technology, protocols, and best practices that protect Cloud Computing environments, applications running in the Cloud, and data held in the Cloud. Securing cloud services begins with understanding what exactly is being secured, as well as, the system aspects that must be managed.

As an overview, backend development against security vulnerabilities is largely within the hands of cloud service providers. Aside from choosing a security-conscious provider, clients must focus mostly on proper service configuration and safe use habits. Additionally, clients should be sure that any end-user hardware and networks are properly secured.

The full scope of cloud security is designed to protect the following, regardless of your responsibilities:

  • Physical networks — routers, electrical power, cabling, climate controls, etc.
  • Data storage — hard drives, etc.
  • Data servers — core network computing hardware and software
  • Computer virtualization frameworks — virtual machine software, host machines, and guest machines
  • Operating systems (OS) — software that houses
  • Middleware — application programming interface (API) management,
  • Runtime environments — execution and upkeep of a running program
  • Data — all the information stored, modified, and accessed
  • Applications — traditional software services (email, tax software, productivity suites, etc.)
  • End-user hardware — computers, mobile devices, Internet of Things (IoT) Devices, etc.

With Cloud Computing, ownership over these components can vary widely. This can make the scope of client security responsibilities unclear. Since securing the cloud can look different based on who has authority over each component, it’s important to understand how these are commonly grouped.

To simplify, Cloud Computing Components are secured from two main viewpoints:

1. Cloud service types are offered by third-party providers as modules used to create the cloud environment. Depending on the type of service, you may manage a different degree of the components within the service:

  • The core of any third-party cloud service involves the provider managing the physical network, data storage, data servers, and computer virtualization frameworks. The service is stored on the provider’s servers and virtualized via their internally managed network to be delivered to clients to be accessed remotely. This offloads hardware and other infrastructure costs to give clients access to their computing needs from anywhere via internet connectivity.
  • Software-as-a-Service (SaaS) cloud services provide clients access to applications that are purely hosted and run on the provider’s servers. Providers manage the applications, data, runtime, middleware, and operating system. Clients are only tasked with getting their applications. SaaS examples include Google Drive, Slack, Salesforce, Microsoft 365, Cisco WebEx, Evernote.
  • Platform-as-a-Service cloud services provide clients a host for developing their own applications, which are run within a client’s own “sandboxed” space on provider servers. Providers manage the runtime, middleware, operating system. Clients are tasked with managing their applications, data, user access, end-user devices, and end-user networks. PaaS examples include Google App Engine, Windows Azure.
  • Infrastructure-as-a-Service (IaaS) cloud services offer clients the hardware and remote connectivity frameworks to house the bulk of their computing, down to the operating system. Providers only manage core cloud services. Clients are tasked with securing all that gets stacked atop an operating system, including applications, data, runtimes, middleware, and the OS itself. In addition, clients need to manage user access, end-user devices, and end-user networks. IaaS examples include Microsoft Azure, Google Compute Engine (GCE), Amazon Web Services (AWS).

2. Cloud environments are deployment models in which one or more cloud services create a system for the end-users and organizations. These segments the management responsibilities — including security — between clients and providers.

The currently used Cloud environments are:

  • Public cloud environments are composed of multi-tenant cloud services where a client shares a provider’s servers with other clients, like an office building or coworking space. These are third-party services run by the provider to give clients access via the web.
  • Private third-party cloud environments are based on the use of a cloud service that provides the client with exclusive use of their own cloud. These single-tenant environments are normally owned, managed, and operated offsite by an external provider.
  • Private in-house cloud environments also composed of single-tenant cloud service servers but operated from their own private data center. In this case, this cloud environment is run by the business themselves to allow full configuration and setup of every element.
  • Multi-cloud environments include the use of two or more cloud services from separate providers. These can be any blend of public and/or private cloud services.
  • Hybrid cloud environments consist of using a blend of private third-party cloud and/or onsite private cloud data center with one or more public clouds.

By framing it from this perspective, we can understand that cloud-based security can be a bit different based on the type of cloud space users are working in. But the effects are felt by both individual and organizational clients alike.

How Does Cloud Security Work

Every cloud security measure works to accomplish one or more of the following:

  • Enable data recovery in case of data loss
  • Protect storage and networks against malicious data theft
  • Deter human error or negligence that causes data leaks
  • Reduce the impact of any data or system compromise

Data security is an aspect of cloud security that involves the technical end of threat prevention. Tools and technologies allow providers and clients to insert barriers between the access and visibility of sensitive data. Among these, encryption is one of the most powerful tools available. Encryption scrambles your data so that it’s only readable by someone who has the encryption key. If your data is lost or stolen, it will be effectively unreadable and meaningless. Data transit protections like virtual private networks (VPNs) are also emphasized in cloud networks.

Identity and access management (IAM) pertains to the accessibility privileges offered to user accounts. Managing authentication and authorization of user accounts also apply here. Access controls are pivotal to restrict users — both legitimate and malicious — from entering and compromising sensitive data and systems. Password management, multi-factor authentication, and other methods fall in the scope of IAM.

Governance focuses on policies for threat prevention, detection, and mitigation. With SMB and enterprises, aspects like threat intel can help with tracking and prioritizing threats to keep essential systems guarded carefully. However, even individual cloud clients could benefit from valuing safe user behavior policies and training. These apply mostly in organizational environments, but rules for safe use and response to threats can be helpful to any user.

Data retention (DR) and business continuity (BC) planning involve technical disaster recovery measures in case of data loss. Central to any DR and BC plan are methods for data redundancy such as backups. Additionally, having technical systems for ensuring uninterrupted operations can help. Frameworks for testing the validity of backups and detailed employee recovery instructions are just as valuable for a thorough BC plan.

Legal compliance revolves around protecting user privacy as set by legislative bodies. Governments have taken up the importance of protecting private user information from being exploited for profit. As such, organizations must follow regulations to abide by these policies. One approach is the use of data masking, which obscures identity within data via encryption methods.

Cloud Security Risks

What are the security issues in Cloud Computing? Because if you don’t know them, then how are you supposed to put proper measures in place? After all, weak cloud security can expose users and providers to all types of cyber security threats. Some common cloud security threats include:

  • Risks of cloud-based infrastructure including incompatible legacy IT frameworks, and third-party data storage service disruptions.
  • Internal threats due to human error such as misconfiguration of user access controls.
  • External threats caused almost exclusively by malicious actors, such as malware, phishing, and Ddos attacks.

The biggest risk with the cloud is that there is no perimeter. Traditional Cybersecurity focused on protecting the perimeter, but Cloud environments are highly connected which means insecure APIs (Application Programming Interfaces) and account hijacks can pose real problems. Faced with Cloud Computing security risks, cyber security professionals need to shift to a data-centric approach.

Interconnectedness also poses problems for networks. Malicious actors often breach networks through compromised or weak credentials. Once a hacker manages to make a landing, they can easily expand and use poorly protected interfaces in the cloud to locate data on different databases or nodes. They can even use their own cloud servers as a destination where they can export and store any stolen data. Security needs to be in the cloud — not just protecting access to your cloud data.

Third-party storage of your data and access via the internet each pose their own threats as well. If for some reason those services are interrupted, your access to the data may be lost. For instance, a phone network outage could mean you can’t access the cloud at an essential time. Alternatively, a power outage could affect the data center where your data is stored, possibly with permanent data loss.

Such interruptions could have long-term repercussions. A recent power outage at an Amazon cloud data facility resulted in data loss for some customers when servers incurred hardware damage. This is a good example of why you should have local backups of at least some of your data and applications.

Why Cloud Security Is Important

In the 1990s, business and personal data lived locally — and security was local as well. Data would be located on a PC’s internal storage at home, and on enterprise servers, if you worked for a company.

Introducing cloud technology has forced everyone to reevaluate cyber security. Your data and applications might be floating between local and remote systems — and always internet-accessible. If you are accessing Google Docs on your smartphone, or using Salesforce software to look after your customers, that data could be held anywhere. Therefore, protecting it becomes more difficult than when it was just a question of stopping unwanted users from gaining access to your network. Cloud security requires adjusting some previous IT practices, but it has become more essential for two key reasons:

  1. Convenience over security. Cloud computing is exponentially growing as a primary method for both workplace and individual use. Innovation has allowed new technology to be implemented quicker than industry security standards can keep up, putting more responsibility on users and providers to consider the risks of accessibility.
  2. Centralization and multi-tenant storage. Every component — from core infrastructure to small data like emails and documents — can now be located and accessed remotely on 24/7 web-based connections. All this data gathering in the servers of a few major service providers can be highly dangerous. Threat actors can now target large multi-organizational data centers and cause immense data breaches.

Unfortunately, malicious actors realize the value of cloud-based targets and increasingly probe them for exploits. Despite cloud providers taking many security roles from clients, they do not manage everything. This leaves even non-technical users with the duty to self-educate on cloud security.

Final Thoughts

That said, users are not alone in cloud security responsibilities. Being aware of the scope of your security duties will help the entire system stay much safer.

🅐🅚🅖


Interested in Management, Design or Technology Consulting, contact anil.kg.26@gmail.com
Get updates and news on our social channels!

LATEST POSTS

One comment

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.